
AND

PROGRAMMING
TER SOFTWARE

A translation of Programmirovanie

Volume 4, Number 5 September-October, 1978

CONTENTS

Engl./Russ.

PROGRAMMING TIIEORY

Program Compositions and Composition Programming- V. N. Red’ko
Formalization of Language- V. A. Tuzov..
Compiler-Writing Technology: A Projection Approach - V. Sh. Kaufman
Corrcctne,~s of (;raph Schemes of Parallel Alg()rithms - Yu. I). Korablln
Parallel Decomposition of Algorithms- A. I. Bclousov

COMPUTER SOFTWARE AND SYSTEM PROGRAMMING
Algorithms for Real-Time Management of a Distributed Computing

System Working in Interactive Mode - A. V. Gavrilov and V. I. Zhiratkov

SOFTWARE INFORMATION SYSTEMS
Chain-Progressive Organization of Overflow Records in Randomized-Structure

Files - V. A. Litvinov and A. A. Kokorin

PROGRAMMED SIMULATION AND COMPLEX SYSTEMS
KIMDS - A Program Suite for Simulating Digital Systems of General Type

- Yu. I. Mitrofanov and A. N. Ivanov

PROCESSING SOFTWARE INFORMATION
An Algorithm for Organizing Hash Tables - R. M. Akchurin

BRIEF COMMUNICATIONS
NEATPL -- An Aid to the Debugging of PL/1 Programs - N. N. Bezrukov ~ .
A Text-Data Packing Module- R. G. Khannanov

303 3
31825
32736
334 45
340 53

348 62

353 69

357 74

364 84

366 87
371 94

The Russian press date (podpisano k pechati) of this issue was 9/28/1978.
Publication therefore did not occur prior to this date, but must be assumed
to have taken place reasonably soon thereafter.

BRIEF COMMUNICATIONS

NEATPL -- AN AID TO TIIE DEBUGGING OF PL/1

N. N. Bezrukov

PROGRAMS

UDC 681.3.06 : 51

A service program designed for the structured printout of the texts of PL/1 programs and
other operations (automatic identifier replacement, control of the listing printout process,
translation of compiler diagnostic messages, etc.) is described as an aid to program de-
bugging.

As the volume and complexity of programs grow they become increasingly difficult to comprehend, debug,
and modify. Consequently, worldwide efforts are being aimed at devising methods and facilities to aid in the
design, debugging, and generally keeping track of complex programs ill. These methods and facilities may
be nominally divided into two groups: general-purpose, i.e., applicable to a fairly broad class of programming
languages, and special-purpose, i.e., oriented toward one specific language.

In the present article we describe .the NEATPL service program, which is designed to aid in compre-
hending the logical structure of PL/I programs. When the disk operating system (DOS) and tape operating
system (08) for computers of the Unified System (ES) used in COMECON countries are employed in conjunc-
tion with PL/1 language translators, NEATPL provides a means for representing the standard translator list=
tag in a more compact and workable listing. The program utilizes a number of ideas of Conrow and Smith [2].
However, while the main ideas remain intact, the specific principles of transformation of the source text in
NEATPL differ from those used in [2].

The service program has two versions: NEATPL1 and NEATPL2. NEATPL1 is a preprocessor, and
the input information for it is thetext of the user program. In the course of operation the progr~n reads the
source text, transforms it, and transfers the transformed program text into the system listing printer and
then onto tape or disk for subsequent translation. The input for NEATPL2 is the translator log, written on
tape or disk. NEATPL2 reads the log, transforms it, and transfers the transformed listing into the system
printer.

The capabilities of NEATPL for the generation of a llsttng exhibiting the logical structure of a program
are most completely utilized when the use of the GOTO statement is limited in the program, i.e., when the
program has a hierarchical structure. Experience has shown that the application of NEATl~I, cncourngcs the
programmer to continually refine the logical structure ()f his pr<)grnms.

General Description of Program Capabilities. The primary function of NEATPL is to generate a com-
pact (two columns per list) listing mirroring the logical structure of the user program. Here the user has a
number of options for controiling the form of the listing. Moreover, NEATPL can execute certain other an-
clllary functions facilitating the debugging process. The required operations are specified by inserting into
the input program comments Of the form

/,: condition -- :1 condition-- 2... *i,

where condition-l, condition-2, etc. are keywords used to specify conditions.

Following is a concise description of the most important conditions and keywords used to specify them.
Keywords used to void a condition are indicated in parentheses. The PROFILE and MACRO conditions refer
only to NEATPL1, and the RUSSIAN condition only to NEATPL2.

1. SHIFT = <integer> (SHIFT = 0). If the SHIFT condition is specified, statements entering into a loop
are shifted by the designated number of positions to the right relative to statements not belonging to the given
loop.

2. COMMENT (NOCOMMENT). If the COMMENT condition Is specified, the listing will Include all com-
ments existing in the source program. If the NOCOMMENT condition is specified, comments existing in the
source program are not-included in the listing.

_

Translated from Programmlrovanle, No. 5, pp. 87-93, September-October, ~978. Original article sub-
mitted August 1, 1977.

366 0361-7688/78/040.5-0366507.50 © 1979 Plenum Publishing Corporation

3. PROFILE (NOPROFILE). If the PROFILE condition is specified, instructions for computing thenum-
ber of executions of each .statement of the source text are included in the listing and in the resultant text.

4. MACRO (NOMACRO). Speci[icntion of the MACRO condition makes it possible to replace identifiers:
in the source pr~)gram text !)Y new identifiers or character strings.

5. RUSSIAN (NORUSSIAN). If the RUSSIAN condition is specified, then in the derivation of each diag-
nostic message NEATPI,2 dete~n~nines its number, selects the translation text of the message with the given
number from the file of diagnostic messages ERMES, and prints the translation text after the English text of

the diagnostic message.

6. NEAT (NONEAT). If the NEAT condition is specified, NEATPL prints each statement on a new line.
If the NONEAT condition is specified, NEATPL transfers during printout to a new line with the beginning of
each (including empty) card or in the event of line overflow.

Like translators, NEATPL permits the first-position symbol to be used for print control. Besides the
CTLASA control symbols, NEATPL responds to the symbols ~ , ~ ~ and ~ . The symbol r~ elicits transfer
of a given card into a subheading, the symbol > shifts all subsequent strings by the designated number ("SHIFT")
of positions totbe right, and the symbol< shifts them SHIFT positions to the left. This makes it possible to
form a relief of level numbers in the declaration of structures.

Transformation of Text of Source Program; DO Relief. The following transformations are employed to
make the program text more comprehensible.

1. If the first statement on a card does not contain labels, then regardless of the position from which it

was entered on the card, it is printed in the position

N -: 7 -~-SIIIFT., (NEST -t- t),

where NEST is the nesting depth of the loop including the given statement. If the statement does not enter
into a loop NEST = 0. If the first statement on a card contains a label, the label is printed at the beginning of
the line.

2. In statements contained on a given card all nonsignificant blanks other than those which facilitate
reading of the program are deleted. This operation is applicable to blanks after : and ; as well as before and
after ! and &.

3. If the NEAT condition is specified, each new statement is printed on a new line.

These transformations produce in the printout a special relief (see Fig. 1), which we call the DO relief.
The DO relief facilitates .error search in a program, because it exhibits by and large the logical structure
of the program. This feature is attributable to the fact that PL/1 statements entering into the THEN and ELSE
parts of an IF statement when there are more than one of them are usually formatted as a DO cluster. Here-
inafter we refer to a listing with DO relief for brevity as a relief listing.

Listing Format. An example of a listing generated by NEATPL is given in Fig. 2. Inasmuch as the
program displays occupy 0nly one column, the second column is not shown in Fig. 2.

Each column of the listing begins with a heading. As in translators, the first card of the program is
transferred into the heading. Below the heading is a subheading, into which is transferred the first of the
cards contained In the given column, with the symbol ~ in the first position. The first three symbols in
each line represent the index, of the program statement. For NEATPI~2 this index always corresponds to the
numbering in the PL/1 translator. In the case of NEATPL1 the correspondence does not carry over tocases

in which the translator has inserted a ; into the source text in the course of error correction. The next two
symbols are set aside for the value of the loop nesting depth. These values correspond to the values generated
by the OS ES PL/1 compiler when the NEST option is specified. The card text fills up the remaining symbols.
If the number of symbols to fill up a given line exceeds the allowed number and the text of the source card is
not used up, then syntactically correct transfer of the text to the next line is executed.

Identifier Substitution in Source Program Text.~ If the MACItOcondition is specified, NEATPL1 has
the capability Of replacing identifiers Of the Source program by arbitrary character strings (i.e., of executing
an elementary form of macrosubstitution). The syntax of the substitution-specifying statements coincides with
the syntax of the assignment of statement of the PL/10S ES translator preprocessor:

% ~ identifier ~> = arbitrary string ;

367

M S~/~ Fig. 1. EXAMPLE OF DO RELIEF.

I TEST: PROC;

2 IF...THEN DO;

4 | DO I-~ S[! WHILE(A...A & B...B)~

5 ~ C...C~

6 2 IF D...D ! F...F THEN DO|

9) DO F=~ BY ~;

~ 4 ’G...G~

1 ! 4 IF H...H TKEN DO~

14 ~ DO 1,=1 BY 1;

166 END;

17 5 END;

18 4 END;
¯

19 9 EHD;

20 2 END;

2! 1 END;

22 END TEST;

Fig.

For example, suppose that the following substitution statements are given:

% PAPER---- ’SYSPRINT’;
%CALL ’ "
%OUT----’PUT FILE(PAPER)EDIT(CAI1D)(A)’;

and the statement CALL OUT occurs in the program text; then this statement is replaced by the string

PUT FILE(SYSPRINT)EDIT(CAR D)(A);

Thus, it is possible to replace calls for procedures without parameters by a linear code for the purpose of
program optimization. We highlight the following in the set of other possible macrosubstitution applications:

1; It is often necessary to replace a variable identifier by another that more accurately exhibits its
function or contains fewer symbols. The situation arises when in the course of development of a program its
size becomes such that it has to be separated into two or more modules. Inevitably in this case a number Of
vari.ables must acquire the attribute EXTERNAL. However, the length of external-variable identifiers must
not exceed 6(DOS) or 7(OS) symbols.

2. Sometimes a program will use constants that are subject to frequent changes. Of course, these con-
stants can be replaced by variables, but in a number of situations it is impossible to do so because of efficiency
considerations or translator limitations. In this event the macrocapabilities of NEATPL can be used to per-

form additional program parametrization.

3. A built-in stenographic no(£tional system can be created for structures that recur frequently in pro-
grams. Suppose, for example, that the statement

PUT FILE(OUT)SKIP EDIT...

recurs frequently in a program. Then by specifying the substitutionstatement~EXTRACT = ’PUT FILE(OUT)
¯

SKIP EDIT’; we can write in the program EXTRACT(’REPORT’)(A)~ After NEATPL processing we obtain

PUT FILE(OU’I’)SKIP EDIT (’REPORT’) (A); .

368

PRIMES: PROC OPTIONS(WAIN);

Sn/* PROGRAM P~NTS FIRST I00 P~MES */

PRI~S: PROC OPTIONS{~[A!N);

PROGRAM P~NTS FIRST 100 P~M~

IN 6 COLUMNS 20 LINES EACH COLUMN

DCL ~I~(100)/~ A~Y OF P~MES

FI~D BIN~Y INITI~(2,3),

LA~/~ INDEX OF LAST P~kIE IN ’P~ME’

INI~I~(~),

C~" CU~NT NUMBER TESTED a/ FInD BIN~Y,

e3~/~ NO. OF NUh]BERS IN COLUMN W/ FIXED BIN

DO 0~-5 BY 2 ~I~(~00);

~ K-~ ~ ~T ~I~(MOD(C~PRI~(K))~)~

IF ~L~T ~I~ ~;

~ST-L~ ; PR~(LAST)-C~;

E~;

PUT SKIP EDIT~£I~T]00 P~ES’) (A);

DO K=~ TO ~;

P~ SKIP;

~ ~ BY ~TR ~ ~T~S~;

P~ ~IT (~I~(K+L)

Fig. 2

FREQS%~T! 10 20 90 40 50 60 70 80 90 %
----+__~+ + ÷---+ +.----+ ÷

3+**

~

272 6+**

99 ?+*

99 8+*

99 9+*

99 10+*

272 11+**

1 12+*
!

20 I~+*

20 14+*
I

1 O0 1 5+*

100 16+*
l

100 17+*

20 18+*
!

Fig. 3

540?

99

~0

100

I0 20)0 40 50 60 70 BO 90
I---+ +---+--~+----+ +---+ +-----+----~

i

!
15+*

!
V

Fig. 4

Generation of Program Profile. The profile of a program is a function whose argument is the index of
a statement in the program and whose value is the number of executions of the given statement from the start
of the program to the point in time at which the profile is generated. Profiles obtained at different points of
the program and for different source data sets contain important information about the behavior of theprogram.

Recently there have appeared a number of automatic systems that either insert counters at necessary
locations in a program or interrupt program execution at definite time intervals in order to determine the
most frequently executed part ofthe program [4]. NEATPL implements a simple system ol" the first type.
For the generation of a program profile it is required to specify the PROFILE condition and to process the
source program through NEATPL. In this case counters are inserted only after DO, BEGIN, and PROCEDURE
statements and at points of the source text where comments of the form /*%... ,/occur. A statement call-
ing the profile-printout routine is generated at locations of the source program where comments of the form
/. 7..../occur.

Since the profile obtained by means of NEATPL most completely mirrors the course of execution of
programs not containing GOTO statements, we call it a structure profile. Its analysis greatly facilitates pro-
gram optimization. It is important to bear in mind, however, that in PL/1 different types of statements differ
considerably in execution time and the same statement is executed in different times when different types of
data are used. The.profile enables the programmer to concentrate his attention on the most frequently exe-
cuted parts of his program. The results of an analysis .of FOFiT1RAN progr,~ns have shown that if the com-
puting time greatly exceeds theinput-output time, then for the majority of programs ~3~ of the codes use
almost 50% of the machine time [4]. Therefore, for programs of this type it suffices to work on improving
precisely that critical 3% in order to achieve a significant speedup of the computations. Consequently, even
such a primitive profile as that generated by NEATPL will make it possible to conserve appreciable time
and effort for more useful activities.

Figure 3 gives a profile of the PRIMES program, and Fig. 4 gives the structure profile of the same
program. The profile is useful not only for optimizing internal programs, but also for the checkout and anal-
ysis of outside programs. In checkout the profile indicates which branches of a program have not been tested
in a giv.en text. For the analysis of outside programs the profile aids in isolating important parts of the pro-
gram from nonessential parts.

Conclusion. NEATPL can be used, beginning with the early stages of program development. Experience
has shown that without NEATPL the search for logical errors in a program usually begins with runs on test
data. With the use of NEATPL this type of error is identified in the acquisition of an unanticipated DO relief
structure. This process does not require a syntactically correct program, and so errors of this type can be
localized and corrected before the first test-data run.

The programmer is aided considerably in the checkout phase by the program profile, the analysis of
which often enables him to locate untested program branches. When development, debugging, and checkout
have been completed, a new deck with~the DO relief fixed in it can be obtained by means of NEATPL. Here
it is possible to replace unfavorable identifiers.

Despite the fact that NEATPL is designed mainly for the processing of source text prior to translation
or translation logging, it can serve a highly auspicious auxiliary function as a documentation facility, because
a person seeing the program for the first time can look at the logical structure of the program without worry-
ing about constructing a flowchart. The relief listing combined with the program profile can provide consider-
able aid in comprehending outside programs. .

The time for NEATPL to process a program text or translation log amounts to only 5-10% of the trans-
lation time. Consequently, the application of NEATPL yields only a slight increase in the program running
time.

370

"The NEATPL program has been in operation since April of 1976, and the experience gathered in that
period has demonstrated its considerable effectiveness for the debugging of programs of great complexity
and size. In particular, since NEATPL is written in PL/1, after creation of the first version the entire re-
maining debugging operation was carried out with the use of the relief listing.

In connection with the teaching of programming in colleges and universities NEATPL can serve as an
error-locating aid to both students and instructors. On the one hand, students can use the relief listing to
locate more errors on their own. On the other hand, errors that the students are not skilled enough tolocate
can be found more rapidly by the instructor with access to the relief listing of the student program. NEATPL
reliably protects the instructor against carelessly written student programs by converting them into accurate
listings with a clearly perceptible logical structure. The application of NEATPL in computing centers, be-
sides easing the work of programmers, in our opinion, will provide programmers with deeper insight into
the programs of their colleagues.

LITERATURE CITED

.

Large-System Debugging Techniques [in Russian], Statistika, Moscow (1977).
K. Conrow and R. G. Smith, "NEATER2: a PL/1 source statement ..r~formatter,~ Commun. ACM, 1_._~3,
No. 11 (1970).
D. Knuth, "Structured programming with go to statements," Comput. Surv., 6, No. 6 (1974).
D. Knuth, ran empirical study of FORTRAN programs," Software-Prac. Exper., _1 (1971).

A TEXT-DATA PACKING MODULE

R. G. Khannanov UDC 658.012.011.56 : 681.3.06

A brief description is given of a family of modules for packing text data into graphs of appro-
priate size while observing appropriate grammatical-association rules.

The UKLAD module is used for packing text data into a graph of appropriate size in accordance with
grammatical rules; the module splits up the text into appropriate elements on the basis of formal rules that
do not involve the semantics of the words or the component parts. In that sense, the algorithm is essentially
equivalent to that of [1], but there are two major differences.

1. A word delimiter may be not only a single space but also any combination of spaces, as well as a
full stop, comma, semicolon; colon, slash, or dash; this means that texts containing common typing errors
are acceptable, e.g., the omission of a space after a comma or the insertion of more than one space between
words. If required, the user can compile his own table of delimiters.

2. The module inhibits hyphenation not only of ST and SK but also of any arbitrarily specified set of
"diphthongs and/or triphthongs.

Other styles of the module have been developed for packing foreign-language texts (English, German,
French, and Spanish). The modules have been written in ES assembler, which means they can be used with
the IBM/360 software, and also with systems of similar architecture (ASVT, S-4, SIEMENS, etc.). Also, a
similar module has been written in the input language of the Minsk-32 (the UKLAD module).

1.

LITERATURE CITED

V. I. Abramov and G~ D. Frolov, "Computer-aided editing," Tsifrov. Vychisl. Tekh. Programmir., No.
6 (1971).

Translated from Programmirovanie, No. 5, p. 94, September-October,]978. Original article submitted
July 6, 1978.

0361-7688/78/0405- 0371 $07.50 ©1979 Plenum Publishing Corporation 371

