
PROGI]AMMING
COMPUTEB SOFTWARE

A translation of Programmirovanie

Volume 14, Number 4

May, 1989

July-August, 1988

CONTENTS

Engl./Russ.

OBITUARY

Boris Nikolaevich Naumov (1927-1988) .. 151 3
An Approach to the Inductive Synthesis of Programs - I. ~. ~tmane 153 5
Concurrency Analysis of Structured and Unstructured Programs

- A. P.Barban ... 161 16

Analysis of Module Testing Plans Allowing for Unrealizable Paths
S. A. Blau and B. A. Pozin ... 168 26

Diagnosing Multiple Errors in Program Modules - V. I. Sagunov 174 34
Modifiable Programs and Homogeneous Modules - M. M. Gorbuno~-Posadov 177 38
Program Debugging in Distributed Computing Systems (Survey)

- So O. Bochkov and R. L. Smelyanskii 185 68
Heuristic Methods of Improving Disassembly Quality - N. N. Bezrukov..~ 195 81
Sequential Analysis of Program Product Reliability - E. P. Bocharov ’ 204 93

The Russian press date (podpisano k pechati)of this issue was 7/31/1988.
Publication therefore did not occur prior to this date, but must be assumed
to have taken place reasonably soon thereafter.

HEURISTIC METHODS OF IMPROVING DISASSEMBLY QUALITY

N. N. Bezrukov
UDC 51:681.3.06

We consider methods of separating instructions and data, based on the creati6n of
a "program map" - the collection of the descriptors of each byte. A:disassembly
method is proposed combining trace data and the comparison of memory dumps (the
distinguished parts of the dumps correspond to variables). An implementation~of

the interactive disassembler NEADASM for ES/OS is described.

.
A system program that reconstructs the source code in assembly language from the load

module is usually called a disassembler,, and the reconstruction process is called disassem-
bly. A disassembler is irreplaceable for analysis and modification of software when the
source code is not available or has been lost. It is not by accident that most software
development systems for microprocessors include disassemblers (see e.g., [i]). Another im-
portant field of application of disassemblers is debugging from memory dumps. A specialized
disassembler version for this purpose may use compiling protocols of the system components
for which the assembly-language source code is available to generate the values of the vari-
ables according to the type specified in the declaration statement (DC/DS for the ES compu-
ter assembly language). Disassembly of variable values allowing for variable types, i.e.,
a printout of values in decimal format for integer variables, in symbolic format for strings,
in scientific format for floating-point variables, etc., will detect a whole range of prob-
lems "at a first glance" [2], essentially improving the productivity of debugging.

in terms of its ambiguity, the disassembly problem is very close to problems tackled by
expert systems [3]: for any load~module treated as a string of bytes, there exist infinitely
many source codes that assemble into the same string of bytes. The differences between
these codes may be more fundamental than just different variable names and labels. For ins-
tance, for the ES computer, the byte string with the hexadecimal representation

05EF D20B DOF0 t004

may be disassembled as

BALR 14,~5 / MVC 240(12,13),4(I)
or as

BALR 14,15 / DC X’D20BD0’ / LP[~ 0,4

The number of disassembly variants increases as the instruction set becomes more "satu-
rated." In case of maximum saturation (e.g., with 256 single-byte instructions), any byte
sequence following an unconditional jump instruction may be disassembled into instructions
or data.

In the absence of additional information, correct separation of the load module into
commands and data requires a high degree of mastery of the programming techniques for the
particular computer and knowledge of the linkage organization between the subprograms and
the structure of the control blocks in the particular OS. Even an expert may make mistakes,
by mistaking some commands for data and vice versa. Therefore, the quality of disassembly
is u’~ually estimated by the degree of correct separation of commands and data.

Once commands and data have been correctly separated, disassembly quality can be further
improved by reconstructing the types of the variables. This task should be considered as
the first step in the next stage of restoring the program specification - the decompiling
stage [4].

Historical Remarks. The history of disassembler development in the USSR [5-14] and
elsewhere [15-19~ hardly can be ~econstructed because the relevant publications are widely

Translated from Programmirovanie, No. 4, pp. 81-93, July-August, 1988. Original article

submitted December 17, 1986.

0361-7688/88/1404-0195512.50 © 1989 Plenum Publishing Corporation 195

scattered in various collections and preprints and also because the research teams have largely
~= ~r~i~] 1~ to cross-citations of publications in this field,

and some articles even do not contain a list of references). According to my data, the first Soviet
disassemblers became available for the B~SM-6 computer in the late 1960s [5, 6] and for theMinsk,!
32 computer in the early 1970s. Only batchdisassemblers were available until the early 1980s. The
first’Soviet interactive disassembler for the ES computer was developed inmid-1980s [13], virtu-
ally simultaneously with the interactive disassembler for theK580 microprocessor [12] and the SM
computer [14].

Disassembly Methods. Batchdisassemblers, studied in [5-11, 15-19], are simple one- or two-
pass programs (the second pass is used to place the labels) processfng the load module or a memory
dump. They are only capable of approximately separating the load module into commands and data.
The problem of reconstructing the type of the data is usually not addressed at all. Various forms
of the disassembly algorithm are traditionally used. This algorithm may be called "pseudoexecu-
tion" of the program being disassembled: starting at the beginning of the program or at some speci-
fied point, the disassembler makes an attempt to translate several current bytes into a command.
If this cannot be done, the bytes are translated into data. The central data structure used for de-
cision making in the so-called command directory. For most computers, this is a table with 256 en-
tries, where each row contains the mnemonic of the instruction with the given operation code, its
length in bytes, and some additional information.

"pseudoexecutlon algorithm often incorrectly disassemblesIn the absence of backtracking, the ’ "
some, possibly quite large, fragments of the program. An incorrect decision to translate the cur-
rent bytes into a command or data is due to the limited context seen by the disassembler (the pre-
vious command and at best several following commands). These errors reduce the value of the results
to such an extent that experienced system programmers often do not bother with disassembled.code
and prefer a simple hexadecimal printout of the load module with the choice of command codes printed
at the bottom for each ".suitable" (in ES computers, even) byte. In ES/OS, the utility IMASPZAP pro-
vides such a printout.

The complexity of disassembly tasks provides fertile ground for the application of heu-
ristic methods, similar to those used for diagnosis in expert systems, such as MYCIN [3].
Note that elementary heuristics are utilized in numerous disassemblers. For instance, the
popular batch disassembler RETRANS for ES/OS determines the value and the number of thebase
register by looking for commands of the form LR RI, 15 or BALR RI,0 in the initial section of
the program fragment being analyzed and then accepts the register RI as the base register. Un-
fortunately, no systematic analysis of heuristic techniques of improving the disassembly qua-
lity has been undertaken so far. In this paper, we will try to identify some classes of heu-
ristics and suggests possible implementation techniques. Although the discussion is oriented
to the ES computer, most of the heuristics can be extended to other processors (SM computers,
K580, KISI0, and others).

The Idea of Program (Descriptor) Flap. the central idea for improving the quality of se-
paration of commands and. data is to create a descriptor for each byte of the program being
disassembled. This descriptor accumulates useful information for the decision "command or
data?". The collection of descriptors forms a program map (PM), which simplifies "Naviga-
tion in uncharted terrain." The PM enables us to separate theanalysis of the load module
code into well-defined passes, each of which analyzes the code from a certain viewpoint and
stores the results in the descriptors of the corresponding bytes.

It is the presence of descriptors that enables us to unify in the process of disassembly
the use of information obtained from a wide variety of sources, primarily from tracing or
comparison of memory dumps. Although the idea of using trace data for disassembly is self,
evident, it is difficult to implement without descriptors because of the need to process in-
formation from different sources simultaneously. Therefore, ~revious authors did not consi-
der this possibility.

Tracing on one or several sets of input data in general will reconstruct only part of
the commands and data comprising the program. Yet the traced fragments are unambiguously
divided into commands and data. The presence of these fragments simplifies the disassembly
of fragments not included in the trace. Moreover, since the trace produces the frequency
and the range of values of each variable, it is easier to identify its type (integer, real,
string, etc.).

Comparison of a number of dumps taken on different input data or in different phases of
program execution in turn makes it possible to separate the domains that contain variables

196

from the domains that contain commands and constants (ignoring, of course, the pathological
case of self-modifying programs). A sharper analysis will estimate the type of memory allo-
cation to variables (static, automatic, or controlled allocation).

Formulation and Testing of Hypothes~s in Disassembly. The program map provides a kind
of testing ground for various hypotheses advances in the process of analyzing the load mo-
dule code from various viewpoints. For instance, the hypothesis that byte K is the first
byte of some command leads to a number of subsidiary hypotheses which should be tested in
order to establish likelihood (in the sense of heuristic category [20]) of the original
hypothesis:

all bytes from byte K to-the first byte of an unconditional jump command are commands;
here unconditional jump commands are the ES computer commands BC and BCR with mask 15, BAL,
BALR (if R2 ~ 0);

if byte K may be the beginning of a jump command and the jump address may be determined
directly, then all the bytes starting with the jump address and until the nearest byte which
may be the first byte of an unconditional jump command should be commands;

if byte K is the first byte of a memory access command and the operand address (A) may
be determined directly, then the bytes starting with A, according to the operand size, should
be data of the type corresponding to the type of the command (e.g., for the substraction com-
mand S, the data in memory should represent a binary number 4 bytes long);

’if byte K is preceded by an unconditional jump command, then there should exist at least
one conditional of unconditional jump command whose operand is the address of the byte K.

The NEADASM Disassembler. As part of the work on the NEAT soft.ware tool system [21],
the author is developing the interactive disassembler NEADASM, which is currently used for
testing various disassembly ~data structures and methods. In addition to the program map
idea described above, the NEADASM disassembler employs various methods of analysis of prog-
ram graphs and data flow graphs [22]. Moreover, there is a special emphasis on questions
of conversational interaction with the human user in the process of disassembly, in parti-
cular, control of the output format on the monitor screen. Although the switch to the in-
teractive mode substantially improves the quality~of disassembly even when using the simplest
algorithms of the "pseudoexecution" kind, it imposes a much greater load on the user. It
is therefore necessary to develop an efficient organization of the man-machine interaction,
similar to that used in most expert systems. NEADASM has taken only the very first steps
in this direction by parametrizing the scope of the interaction on a number of logical scales,
which are considered in wha[follows.

Data Structures for Disa~se~bly. The data structures used in the simplest disassemblers
are essentially the command directory and the label table. NEADASM, on the other hand, has
eight data structures forming the disassembler data base. They include the program image
(PI), the program map (PM), the list of linear groups of commands (LLGC), the relation
IMPLIES, the relation CONTRADICTS, the command directory (CD),-the bicommand directory (BD),
and the data directory dictionary (DDD).

ProBram imaEe (PI) is the load module or the dump read into main memory in unpacked form
(two bytes in memory correspond to each byte of theload module). Since the m~nimum length
of the command field in ES computers is half~a byte, this representation simplifies various

checks.

program map (PM). is the central data structure of the disassembler. In ES computers,
the commands are aligned at the half-word boundary, and therefore half-word descriptors
(i.e.,.the descriptors of two consecutive bytes starting with an even address), and not byte
descriptors, are used for memory reduction. Note that most microprocessors require byte des-
criptors, since they have one-byte commands. The descriptor structure has undergone major
changes during NEADASM development. In order to get a feeling of these changes, it suffices
to compare the structure described below with one of the early versions published in [23].

Each descriptor occupies four bytes (a word in ES terminology) and has the following
structure:

1 DESCRIPTOR,

20PTYPE BIT(2), /* COMMAND TYPE*/

2 CONT BIT(B), /* SCAIJE OF CONTINUATION OF PREVIOUS COMMANDS */

197

LVAR BIT(3), /* SCALE OF JOINING VARIANTS OF LEFT COMMANDS */

PREV~T(2), /* NUHBER OF PREVIOUS CO~DS TO THE LEFT */

NEXT BIT(2), /* NUMBER OF FOLLOWING COMMANDS TO THE RIGHT */

2 XMARK BIT(2), /* OPERAND LIKELIHOOD SCORE */

2 BICOM BIT(2), /* PRESENCE OF BICOMMANDS TO RIGHT AND TO LEFT */

2 USE BIT(4), /* SCALE OF ACCESS TYPES TO A HALF-WORD */

2 EBCDIC BIT(4), /* NUMBER OF EBCDIC SYMBOLS TO LEFT AND TO RIGHT */

2 SYMTYPEBIT(4), /* SCALE OF SYMBOL TYPES */

2 BASEREGBIT(4); /* BASE REGISTER NUMBER */

The field OPTYPE contains the type of the possible command, as determined from the con-
tents of the first byte of the half-word (00 - illegal code, 01 - ordinary operation, i0 -
conditional jump, Ii - unconditional jump).

The field CONT determines the possibilitiesthat the given half-word is a continuation
of some command that began in one of the previous half-words (i00 - the half-word may be a
continuation of a 4-byte instruction, 010 - the second half-word of a 6-byte instruction,
001 - the third half-word of a 6-byte instruction).

The field LVARcontains information to the effect that the previous second, fourth, and sixth
bytes contain command codes of length two, four, and six bytes respectively (i.e., "joining" va-
riants with the previous commands to the left).

The fields PREV, NEXT give the number of commands before and after the current command (00 -
none, 01 - one, i0 - two, ii - three and more). The presence of commands to the left and to the
right increases the likelihood of the hypothesis that the current half-word starts a command.

The field XMARK contains the likelihood score of the command operands on a 4-point scale
(00 - no, 01 - more likely no than yes, I0 - more likely yes than no, ii - yes). For ins-
tance, for the commands M, MR, D, and DR, the number of the first register should be even
(when the register number is odd, the likelihood is zero). For RX commands (with the ex-
ception of LA) equality of the numbers of base and index register is unlikely (the score is
01). Similarly, for the commands CR and LR it is unlikely to have equality of the registers
of the first and second operands, and for word-manipulation commands it is unlikely that the
bias is not a multiple of 4 (for half-word manipulation commands, not a multiple of 2).

The field BICOM indicates i~ the pair of commands "previous-current" forms a frequently
used combination (bicommand) i~ ES computers. The frequency of bicommands is estimated us-
ing a special table.

The field USE contains information on the usage of the current half-word in the program.
The bits indicate that information is written into the given half-word (by the commands ST,
STH, oMVC, etc.), that the half-word is read as data (by the commands L, LH, A, AH, C, CH,
etc.), that the half-word is read by the command EX, and that there is a jump command to the
current half-word.

The field EBCDIC is filled if both bytes of the half-word contain codes corresponding to
EBCDIC symbols from the standard 64-symbol set; it gives the total number of EBCDIC symbols
surrounding the given half-word. This information is of considerable heuristic value, i.e.,
it formalizes the technique often applied by programmers in the analysis of dumps: the prog-
rammer uses the right-hand part of the dump (containing symbolic representation of the cor-
responding bytes) .to identify a space with meaningful symbolic information and then attempts
to interpret it as part of data. Note that the codes of the most frequently used commands
in system programs for ES computers (with the exception of MVC, CLC, XC, and ST) are not re-
producible by the standard 64-symbol set on line printers without lower-case letters. There-
fore, a sequence of more than three EBCDIC symbols suggests the hypothesis that the corres-
ponding memory space contains a text variable.

The SYMTYPE scale containing the types of the symbols in the given field is used to re-
fine the field composition. Four different types of symbols are distinguished (capital let-
ters, digits, separators, and Cyrillic letters that do not coincide in form with Latin let-
ters).

198

The last field BASEREG gives the number of the base register used in the potential com-
mand. This field helps in the analysis of regions of constancy of the base register number,
thus simplifying the placement of the directives USING and DROP. For commands whose format
does not contain a base register this field is zero.

The information contained in descriptors may bring out a whole range of contradictions
that arise when we advance the hypothesis that the current half-word starts a command. These
contradictions, in particular, include the situations OPTYPE ~ ’0’B & CONT ~ ’O’B (the half-
word cannot start a command and at the same time be a continuation of the previous command),
PREV ~ ’0’B & NEXT = ’0’B, or, conversely, the presence of more than a single 1 bit in XMARK,
etc. The NEADASM user may specify a list of contradictions when the system should switch
to interactive mode, types of contradictions when the hypothesis is rejected, and types of
contradictions that should be ignored when evaluating the likelihood of the hypothesis that
the current half-word starts a command. In this way, the man -machine dialogue can be res-
tricted to cases when it is really necessary.

The next information structure is the list of linear groups of commands (LLGC). A linear
group of commands (LGC) is a fragment of the load module having the property that if the
first LGC byte starts a command, then all the other LGC bytes also contain commands. LGC
clearly may contain only one unconditional jump (as the last command). Static program data
may be located between two LGC or after the last LGC in the program. Therefore, in order to
separate commands and data, it suffices to determine correctly the upper boundary of each
LGC. For ES computers, there ar four main cases of data location: after the command BCR
(this command usually serves to return to the calling program from a subprogram); after the
command B (this commahd is often followed by local constants and parameters for SVC); after
the command BALR or, more seldom, BAL (list of parameters); after the command SVC 13 (super-
visor call for abnormal termination of the executing program).

A first approximation of the upper boundary of the LGC may be obtained by backtracking
from the current command until we hit a descriptor with OPTYPE = ’0’B & CONT = ’0’B (data)
or OPTYPE = ’II’B (unconditional jump). In the latter case, we may assume that there is no
data zone between the LGC examined. A potential symptom of 9 boundary between two LGC is
the presence of a half-wrd with EBCDIC ~ ’0’B, i.e., the pr~sence of a string of more than
three symbols.

In order to refine the LGC boundary, we can attract all the sophisticated tools of ana-
lysis provided by descriptors. In particular, we can check the admissibility of bicommands
at the join of two LGC. If the previous LGC ends with a subprogram call, then we should
test the hypothesis that the data zone contains a list of parameters. A list of parameters
always occupies a whole number of words, which may be interpreted as addresses, and often
ends with a word with X’80’ in the first byte (the end marker for a variable-length para-
meter list). If the previous LGC ends with the command SVC, then we should test the hypo-
thesis that the command SVC is preceded by a parameter list. In ES/OS, each SVC has ’a fixed
structure of parameter list in which the type of the elements is known and may be used for
recognition. Moreover, if the previous LGC ends with an unconditional jump, then the first
command in the next LGC shouod contain a label.

Command d~[9~tory (CD) is a table in which every row contain s information about a cer-
tain command. A call to CD is via an intermediate vector of admissible commands 256 half-
words long, which contains the indices of the corresponding CD rows for admissible command
codes and zeros for inadmissible codes. The fields ofeach CD element include the length
of the command, the address of the subprogram assessing the admissibility of the operands,
and the command type (an 8-bit descriptor distinguishing between.jump commands, word-manipu-
lation commands, privileged commands, etc.)..

Bicommand directory (BD) is a 256 × 256 byte table whose elements record the likelihood
of occurrence of the particular two-command combinations (0 - "unrealistic," 1 - "condition-
ally unrealistic," 2 - "unlikely," 3 - "rare").

Unrealistic are two-command combinations the use of which in programs is meaningless
(two comparison commands). Conditionally unrealistic are two-command combinations which
are rendered meaningless by their operands (e.g., two identical commands with identical re-
sulting operands are often meaningless, such as L -L, MVC-MVC, ST-ST, etc.). Unlikely are
bicommands that do not occur in software of the particular class. Measurements of bicommand
frequencies performed by the author suggest that system programs (we have used PRIMUS system

199

programs and programs of the SPEKTR data bank) use around 1,000 bicommands of the total of
~O~ t~ 30,000 (i~3~) poo~i~l~ ~om~ir~a~ion~. ~ou% half of these occur not more than

once ini every i0,000 commands are are classified as rare.
A likelihood level can be defined in NEADASM below which the corresponding bicommands

are treated as inadmissible and the system switches to interactive mode for refinement. The

. default level is 3.

Data Directory Dictionary (DDD~. The basic information structure intended for rconstruc-
tion of data types is the list of attributes (properties) of each variable, including the
identifying attributes, representation attributes, usage attributes, and passport attributes.
The identifyin~ attributes include the address, the identifier (a short variable name not
exceeding 8 symbols), and ’the name (a more accurate and full variable name, up to 32 symbols
long). To improve readability, the user may specify the minimum frequency of a variable
(MINFRQ) above which the disassembler substitutes the identifier foro.the full name, i.e.,
frequently used variables are represented by the abbreviated identifier and seldom used vari-
ables by their full name. Representation attributes include information on alignment, lenBth
in bytes, and type of the variable. Usage attributes include the frequency, the cross-re-
ferences (the list of addresses and command codes in which the given variable is used), the
cross-reference descriptor (an 8-bit field obtained by logical addition of the descriptors
of the cross-referenced commands), access type (read, write, read -write, write-read), char-
acteristic (local variable, input parameter, output parameter, internal variable, etc.), ad-
missible range (filled manually or from trace results), and some other. Passport attributes
include the version, date of creation, date of updating, and some additional information ne-
cessary in order to preserve the chronology of program disassembly, which is particularly
important.for large programs [24].

The structure of the DDD element makes it possible to derive someattributes from exist-
ing attributes. For instance, if a variable is only used by half-word manipulation commands,
then it is most probably an integer variable or an attribute-type variable (if its range con- .

sists of two-three values, such as 0,I or 1,2,3). If the variable is a read variable, then
it is either a constant or an input parameter. The derivation can be automated by using a
system of productions or rewrite rules which lead to a fairly natural program for recognition
of patterns of this type [3] (some blocks of the MF~Ya compiler [25] are used, previously ap-
plied for recognition of syntactic constructs of high-level languages).

The DDD elements may be downloaded to a library. The external representation of the DDD
element is compatible with the declaration of the variable in assembly lanBuage (DC/DS for
variables, EQU for labels), for instance:

EOF DC F’0’ ADDRESS 0160
*END-OF-FILE SYSIN LOCAL VARIABLE

*END MARKER FOR FILE WITH DD-NAME SYSIN
*ADMISSIBLE RANGE: 0-i
*USED 3 TIMES
REFERENCES 006C - ST, 0078 - C, 0124 - ST
*TYPE: INTEGER
*ACCESS TYPE: WR
*TYPE OF COMMANDS: RX(F)
*DISASSEMBLY DATE: 18.06.86
*SECTION: XOPEN VERSION 2

The representation in the form of DC/DS/EQU operators makes it possible to include these
sections with the aid of the operator COPY when generating assembly language code, which re-
duces the size and improves the readability of disassembly results..The length of the com-
ments can be controlled on a bit scale, in which each bit corresponds to an attribute of the

DDD element.

~mplementation Features. NEADASM was implemented following the general design strategy
of syntax-driven processors. Note that there are no previous instances in the literature of
such an approach to disassembler design as a variety of compiler. Our model partitions the
disassembly process into five phases: initialization~ scanning, parsin~ semantic analysis,
and source dode Beneratio~. Each phase comprises one or several passes, always with an op-
tion to switch to interactive model.

Initialization phase includes passes that read the program to be disassembled or sections
of t~is program into main memory, initialize the descriptors, and fill parts of the descr~p-

200 "

tors from trace data or from comparison of memory dumps. The trace protocols are prepro-
cessed by a special program, which outputs the information in a form suitable for direct
filling of descriptors.

~annin~ phase consists of passes that fill the PM and perform attribute induction of
adjacent descriptors. Conflicts arising in attribute induction are resolved interactively.

Parsin phase identifies the LLGC, using the unambiguously classified half-w0rds as~re-

ference points. Reference points containing commands are parsed to the potential LGC bound-
ary (unconditional jump commands or unambiguously identified data). The parsing algorithm
is a variant of the pseudoexecution algorithm. Parsin can be run backward from the reference
point (backward pseudoexecution).

Semantic parsin~ phase is the most complex phase, including passes that identify the
scope of the base registers, place the USING and DROP directives, fill the DDD, create the
program schema, and perform its decomposition.

When determining the scope of the base registers, two lists are prepared: the list of
registers used as the base register in jump commands and the list of registers used as base
registers in data manipulation commands. For each element in this list, a table of addresses
of the commands changing the values of the corresponding registers is constructed. Then in
the interactive mode the user receives suggestions as to the recommended placing of the USING
and DROP directives. To simplify the recognition of based structures (fictitious sections
in the terminology of the ES assembler), the user may view on the screen a "cross-section"
of the program which includes only the commands using the particular reister. Note that cor-
rect placement of the USING and DROP directives significantly influences the disassembly
quality, and it is therefore advisable to develop supplementary utilities facilitating the
solution of this problem.

Once the USING and DROP dirctives have been placed, the following passes fill the DDD.
Unlike the existing interactive disassemblers, NEADASM recognizes the classical control
structures (IF-THEN-ELSE, SELECT, CASE, the loops WHILE, UNTIL, FOR, N + ~2, etc.), which
improves the understanding of the program being disassembled. Moreover, loop recognition is
important for identifying common data types, such as arrays~

¯

As a recognition method of control structures, NEADASM uses the apparatus of graph theory.
In order to construct the program graph, each LGC is replaced with one input, one output com-
mand sequences (the so-called linear sections, LSEC). The LSEC adjacency list describes the
graph of the disassembled program with linear sections as nodes (the program schema). Since
not all the jump addresses have been identified in the preceding passes, the schema may be
incomplete; however, in order to simplify the discussion, we assume that a complete schema
is available.

The first stage in schema analysis involves decomposition into generalized control struc-
tures, the so-called hammocks [26-28]. A hammock is a subgra~h of the program schema with
one input and one output node. The hammock is connected with the rest of the schema only
through these two nodes: all the arcs from the rest of the schema enter the input (inside)
node, and all the arcs leaving the interior nodes of the hammock enter the output (outside)
node. The output node is called an outside node because it does not belong to the hammock
and it may also receive arcs from other nodes of the schema located outside the hammock. Se-
veral hammocks may share an output node. Sometimes the output node of a hammock is called
focus.

Decomposition produces an ordered list of hammocks H={hI, h=, h~, ..., hm} which satisfies

the following relationships: a) if i ~ j, then hi ~ h~; b) if i < j, then either hi and jj
hve no common nodes, or all the nodes of hi are contained in hj. In other words, hammocks,
like ordinary control structures, are either mutually independent or nested in one another.
The list H includes all the standard control constructs (IF-THEN-ELSE, SELECT, CASE, the
loops WHILE, UNTIL, FOR, N + ~/2, etc.), since they all have one input and one output and are
therefore hammocks.

Note that some authors (see, e.g., [27]) use a definition of hammock which prohibits the
existence of an arc leaving the output (outside) node and entering the input (inside) node.
From the viewpoint of completeness of decomposition, this restriction is unconstructive,
since it loses the control structures enclosed in an UNTIL loop. For a more detailed dis-
cussion of these topics, and for an algorithm decomposing the program schema into hammocks,
see [28].

201

In ~order to simplify the understanding of the program being disassembled, we classify
th~ ~~-~ ~--~e~ e~~dk with co~ents, which contain the
hammock type and the ll.st of var[nb]es used i[i~ the’hammock. For hammocks repr~s(’l, tl.ng clas-
sical control constructs, the type is the construct name, and for all other constructs it is
the number of nodes, their labels, and the index of the hammock schema in the catalog [28].
The list of variables may additionally give the type of access to the variable (read only,
write only, read -write, and write-read), which simplifies hammock analysis. In general,
in order to determine the access type, we have to apply methods of data flow analysis, but
read-only and write-only access types can be determined by constructing for each LSEC in
the hammock two logical scales, R and W: R(K) = 1 if the K-th variable is read and W(K) = 1
if this variable is altered in the particular section. Information about the entire ham-
mock is obtained by logical addition of scales from the information about the separate LSECs.

Our studies have identified two particularly promising directions of improving disas-
sembly quality.

The first direction is associated with increasing the level of the disassembled text by
introducing backward compiling elements in the disassemblers [4]. Theoretically, disassembly
is a particular case of the more general problem of backward compiling, i.e., reconstruction
of code in a higher-level language from code in a lower-level language. Backward compiling
is a new direction in compiling theory, which has not been studied so far. It involves a
whole range of unsolved problems associated with recognition of data types, data structures
(arrays, records, lists, etc.), and also standard instruction sequences (e.g., the procedure
prologue and epilogue, extensions of system macro calls, etc.). LGC may be considered as a
sentence in some context-sensitive language and it can be recognized by 9ynthax-driven meth-
ods (the Floyd-Evans language [25] or attribute grammars). ~

The second, no less important, direction of improving the disassembly quality calls for
application of algorithms and methods from expert systems. We should stress that the main
tasks of disassembly (separation of commands and data, reconstruction of variable types and
data structures) are particular cases of pattern recognition or, in a restricted sense, of
program "understanding." We know that the understanding of speech is based on establishing
some global context, which provides a framework for interpreting the spoken wrds and phrases.
Therefore, a disassembly expert system should first establish "conceptua! skeleton" of the
program to be disassembled, by elucidating interactively the functions performed by the prog-
ram and the corresponding data structurs. NEADASM implements only the simplest method of
context tuning, which reduces to elimination of privileged commands from the command direc-
tory if it is known that the program is never executed in the "supervisor’’ mode, floating-
point arithmetic commands if it is known that the program never performs numerical computa-
tions, etc. Particularly useful is the elimination of privileged commands, because data
starting with X’80’ often occur at the join of LGCs, and these data will be disassembled as
the command SSM.

Disassembly expert systems may be classified as diagnostic systems. There is a certain
analogy with other known systems, such as the "intelligent programming tutor" [29] and the
"intelligent debugger" [30]. The development of disassemblers in the framework of artificial
intelligence therefore appears to be most promising.

LITERATURE CITED

i. B. V. Antonov, S. F. Glazer, A. G. Malikov, and A. I. Shibalin, "An automated software
design system for the one-chip microcomputer KISI6VE48," Mikroprotsessornye Sredstva i
Sistemy, No. 3, 25-27 (1986).

2. N. N. Bezrukov, "Some possibilities of listing processing in ES/OS," USiM, No. 5, 69-74
(1983)o

3. M. Stefik, I. Eikins, R. Balzer, et al., "Expert system organization," Kiberneticheskii
Sbornik, Novaya Seriya [Russian translations], No. 22, Mir, Moscow (1985), pp. 170-220.

4. N. N. Bezrukov, "Some issues in backward compiling theory," in: Issues of Improving the
Functional. Quality of Software in Real-Time Computing Systems [in Russian], KIIGA, Kiev
(1987), pp. 10-22.

5. G. L. Maznyi, A Compiler from the Language of the B~SM-6 Computer to Autocode [in Rus-
sian], Preprint No. 11-4950, JINR, Dubna (1970).

6. G. L. Maznyi, Description of a Compiler from the Language of the B~SM-6 Computer to Auto-
code [in Russian], Preprint No. B2-II-4990, JINR, Dubna (1970).

7. V. V. Galaktionov, O. N. Lomidze, and G. L. Maznyi, " ’Strange’ compilers in the Dubna
monitor system for the B~SM-6 computer,’’ in: Conference on ~Programming and Mathematical
Methods of Solution of Physical Problems [in Russian], Preprint No. DI0-7707, JINR, Dub- .
na (1974). -

8. A. A. Bekasov and V.. P. Bispen, "Disassembler’organization for the K580IK80 microproces
sor," in: Computational Processes and Structures [in Russian], No. 48, Leningrad. Inst.
Aviats. Priboroshroeniya, Leningrad (1981), pp. 22-24.

9. E. Yu. Mazepa and V. A. Sienko, A Decompiler from the Load Language to the ASS2 LanBuage
for the ES-1010 Computer [in Russian], Preprint No. N/2509, JINR, Dubna (1981).

I0. A. N. Afanas’ev, V. N. Negoda, S. V. Skvortsov, and A, A. Smagin, "Software analysis
tools for systems based on the INTEL 8080 microprocessor," in: Design and Application of
Microprocessor Control Systems [in Russian], MI~M, Moscow (1984), pp. 217-220.

ii. V. I. Yudkovskii and I. M. Aberemkov, "Reassembly of object modules of the SM computer,"

Prib. Sistemy Upr., No. 3, 9-11 (1985).
12. Methodological Materials and Documentation for Application Program Packages, No. 40,

Micro-DDS - A Portable Operating System for Microcomputers, Part 2. Operator. Manual [in

Russian], MTsNTI-NIIPU, Moscow (1985).
13. A. A. Pavlenko, "An interactive disassembler for ES/OS," in: Issues of Improving the

Functional Quality of Software for Real-Time Computing Systems [in Russian], KIIGA, Kiev
(1987), pp. 51-57.

14. A. G. GriBor’ev, "An interactive disassembler for load modules in the RAFOS operating
systems," Mikroprotsessornve Sredstva i Sistemy, No. 4, 19-23 (1987).

15. K. Datta, S. Bhattacharya,~and G. Das, "Table-driven generalized disassembler for 8-bit
microprocessors," Microprocessor Applications and Industrial Construction, Proc. Inf.
Conf., Calcutta-New Delhi (1981), pp. 235-241.

16. R. H. Davis and A. J. Bathgote, "A Zilog ZS000 disassembler," Software Practice and Ex-

perience, 13, No. ii, 1055-1077 (1983).
17. W. Schardei-~, "Ein disassembler f~r den mikroprozessor ZS0 auf der basis von APL,"

Elektron. Ind., No. 2, 28-30 (1982).
18. M. Antonova and ~. Arakchiiski, "A reassembler for INTEL 8089," Avtomatika i Vychislit,

Tekhnika (Bulgaria), 17, No. 5, 51-53 (1983).
19. P. Arno, "Mit etikett~ Ct.-Mag. Comput. Techn., No. ii, 140-143 (1986).
20. D. Polya, Mathematics and Reasonable Deduction [Russian translation], Nauka, Moscow

(1975). "21. N. N. Bezrukov, "Support tools for software development for automatic control systems,

in: Applied Issues of Software and Hardware Reliability of Computing Systems [in Russian],
KIIGA, Kiev (1985), pp. 23-30.

22. V. A. Evstigneev, Application of Graph Theory in Programming [in Russian], Nauka, Moscow

(198s).
23. N. N. Bezrukov, "Improving disassembly quality by organizing the disassembler as an ex-

pert system," in~ Issues of Evaluating the Functional Quality of Software in Real-Time
Computing Systems [in Russian], KIIGA, Kiev (1986), pp. 16-24.

24. N. N. Bezrukov, "A simple method of organizing a relational database on the development
status of large software systems," Programmirovanie, No. 2, 44-53 (1985).

25. N. N. Bezrukov, "A modification of the Floyd-Evans language," Programmironanie, No. 4,

53-64 (1979).
26. V. V. Martynyuk, "On analyzing the transition graph for an operator schema," Zh. Vychisl.

Mat. Mat. Fiz., 5, No. 2, 293-310 (1965). ~J
27. V. N. Kas’yanov,-"Analysis of program structures," Kibernetika, No. i, 48-61 (1980).

28. N. N. Bezrukov, "Decomposition of a directed graph into hammocks and its use for back-
ward compiling of control structures," in: Theoretical and Applied Problems of Automatic
Control Systems [in Russian], KIIGA, Kiev (1988), pp. 3-18.

29. D. R. Anderson and B. D. Reiser, "A Lisp tutor," in: Reality and Predictions of Artifi-
cial Intelligence [Russian translations], Mir, Moscow (1987), pp. 27-47.

30. W. L. Johnson and E. Soloway, "PROUST (An automatic debugger in Pascal)," in: Reality
and Predictions of Artificial Intelligence [Russian translations], Mir, Moscow (1987),

pp. 48-70.

